Gleitender Durchschnitt Vorhersage Einleitung. Wie Sie vermutlich schauen, betrachten wir einige der primitivsten Ansätze zur Prognose. Aber hoffentlich sind diese zumindest eine lohnende Einführung in einige der Rechenprobleme im Zusammenhang mit der Umsetzung von Prognosen in Tabellenkalkulationen. In diesem Sinne werden wir von Anfang an beginnen und beginnen mit Moving Average Prognosen zu arbeiten. Gleitende durchschnittliche Prognosen. Jeder ist vertraut mit gleitenden durchschnittlichen Prognosen, unabhängig davon, ob sie glauben, sie sind. Alle Studenten tun sie die ganze Zeit. Denken Sie an Ihre Testergebnisse in einem Kurs, in dem Sie vier Tests während des Semesters haben werden. Angenommen, Sie haben eine 85 auf Ihrem ersten Test. Was würden Sie für Ihre zweite Testergebnis vorhersagen Was denken Sie Ihre Lehrer würde für Ihren nächsten Test-Ergebnis vorhersagen Was denken Sie, Ihre Freunde könnten für Ihren nächsten Test-Ergebnis vorherzusagen, was Sie denken, Sie Ihre Eltern für Ihren nächsten Test-Ergebnis vorhersagen könnte Unabhängig von Alle die blabbing Sie tun könnten, um Ihre Freunde und Eltern, sie und Ihr Lehrer sind sehr wahrscheinlich zu erwarten, dass Sie etwas im Bereich der 85 erhalten Sie gerade bekommen. Nun, da Sie Ihren Freunden trotz Ihrer Eigenwerbung lässt vermuten, Sie selbst überschätzen und Abbildung Sie weniger für den zweiten Test studieren können und so erhalten Sie einen 73. Nun, was all die betroffen sind und unbeteiligt gehen Erwarten Sie erhalten auf Ihrem dritten Test Es gibt zwei sehr wahrscheinlich Ansätze, damit sie eine Schätzung unabhängig davon entwickeln, ob sie sie mit Ihnen teilen. Sie können zu sich selbst sagen, dieser Kerl ist immer bläst Rauch über seine smarts. Hes gehend, ein anderes 73 zu erhalten, wenn hes glücklich. Vielleicht werden versuchen, die Eltern stärker unterstützen und sagen, quotWell zu sein, haben Sie ein so weit gekommen 85 und 73, so sollten Sie vielleicht Abbildung auf immer über eine (85 73) 2 79. Ich weiß nicht, vielleicht, wenn Sie weniger Party tat Und werent wedelte das Wiesel ganz über dem Platz und wenn Sie anfingen, viel mehr zu studieren, konnten Sie einen höheren score. quot erhalten. Beide dieser Schätzungen sind wirklich gleitende durchschnittliche Prognosen. Der erste verwendet nur Ihre jüngste Punktzahl, um Ihre zukünftige Leistung zu prognostizieren. Dies wird als gleitende Durchschnittsprognose mit einer Datenperiode bezeichnet. Die zweite ist auch eine gleitende durchschnittliche Prognose, aber mit zwei Perioden von Daten. Nehmen wir an, sauer du all diese Leute eine Art haben auf Ihrem großen Geist Zerschlagung und Sie entscheiden sich für Ihre eigenen Gründe auch im dritten Test zu machen und eine höhere Punktzahl vor Ihrem quotalliesquot zu setzen. Sie nehmen den Test und Ihre Gäste ist eigentlich ein 89 Jeder, einschließlich selbst, ist beeindruckt. So jetzt haben Sie die abschließende Prüfung des Semesters herauf und wie üblich spüren Sie die Notwendigkeit, alle in die Vorhersagen zu machen, wie youll auf dem letzten Test tun. Nun, hoffentlich sehen Sie das Muster. Nun, hoffentlich können Sie das Muster sehen. Was glauben Sie, ist die genaueste Pfeife, während wir arbeiten. Jetzt kehren wir zu unserer neuen Reinigungsfirma zurück, die von Ihrer entfremdeten Halbschwester namens Whistle While We Work begonnen wurde. Sie haben einige vergangene Verkaufsdaten, die durch den folgenden Abschnitt aus einer Kalkulationstabelle dargestellt werden. Zuerst präsentieren wir die Daten für eine dreidimensionale gleitende Durchschnittsprognose. Der Eintrag für Zelle C6 sollte jetzt sein Sie können diese Zellformel auf die anderen Zellen C7 bis C11 kopieren. Beachten Sie, wie der Durchschnitt bewegt sich über die jüngsten historischen Daten, sondern verwendet genau die drei letzten Perioden zur Verfügung für jede Vorhersage. Sie sollten auch bemerken, dass wir nicht wirklich brauchen, um die Vorhersagen für die vergangenen Perioden zu machen, um unsere jüngste Vorhersage zu entwickeln. Dies ist definitiv anders als das exponentielle Glättungsmodell. Ive eingeschlossen das quotpast predictionsquot, weil wir sie auf der folgenden Webseite verwenden, um Vorhersagegültigkeit zu messen. Nun möchte ich die analogen Ergebnisse für eine zwei-Periode gleitenden Durchschnitt Prognose zu präsentieren. Der Eintrag für Zelle C5 sollte jetzt sein Sie können diese Zellformel auf die anderen Zellen C6 bis C11 kopieren. Beachten Sie, wie jetzt nur die beiden letzten Stücke der historischen Daten für jede Vorhersage verwendet werden. Wieder habe ich die quotpast Vorhersagequot für illustrative Zwecke und für die spätere Verwendung in der Prognose Validierung enthalten. Einige andere Dinge, die wichtig zu beachten sind. Für eine m-Periode gleitende Durchschnittsprognose werden nur die m neuesten Datenwerte verwendet, um die Vorhersage durchzuführen. Nichts anderes ist notwendig. Für eine m-Periode gleitende durchschnittliche Prognose, wenn Sie Quotpast Vorhersagequot, beachten Sie, dass die erste Vorhersage tritt im Zeitraum m 1 auf. Diese beiden Fragen werden sehr wichtig sein, wenn wir unseren Code entwickeln. Entwicklung der Moving Average Funktion. Nun müssen wir den Code für die gleitende Durchschnittsprognose entwickeln, die flexibler genutzt werden kann. Der Code folgt. Beachten Sie, dass die Eingaben für die Anzahl der Perioden sind, die Sie in der Prognose und dem Array der historischen Werte verwenden möchten. Sie können es in beliebiger Arbeitsmappe speichern. Funktion MovingAverage (Historische, NumberOfPeriods) As Single Deklarieren und Variablen Dim Artikel As Variant Dim Zähler As Integer Dim Accumulation As Single Dim HistoricalSize Initialisierung As Integer initialisieren Variablen Zähler 1 Accumulation 0 Bestimmung der Größe der historischen Array HistoricalSize Historical. Count für Zähler 1 Um NumberOfPeriods Summieren der entsprechenden Anzahl der zuletzt beobachteten Werte Accumulation Accumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Der Code wird in der Klasse erklärt. Sie möchten die Funktion in der Tabellenkalkulation positionieren, sodass das Ergebnis der Berechnung dort erscheint, wo es die folgenden haben soll.8.4 Durchschnittliche Modelle verschieben Anstatt frühere Werte der Vorhersagevariablen in einer Regression zu verwenden, verwendet ein gleitendes Durchschnittsmodell vergangene Prognosefehler Ein Regressionsmodell. Y c et the theta e dots theta e, wobei et weißes Rauschen ist. Wir bezeichnen dies als MA (q) - Modell. Natürlich beobachten wir nicht die Werte von et, also ist es nicht wirklich Regression im üblichen Sinne. Man beachte, daß jeder Wert von yt als gewichteter gleitender Durchschnitt der letzten Prognosefehler betrachtet werden kann. Jedoch sollten gleitende Durchschnittsmodelle nicht mit der gleitenden glatten Glättung verwechselt werden, die wir in Kapitel 6 besprochen haben. Ein gleitendes Durchschnittsmodell wird für die Prognose zukünftiger Werte verwendet, während die gleitende gleitende Durchschnittskurve für die Schätzung des Trendzyklus der vergangenen Werte verwendet wird. Abbildung 8.6: Zwei Beispiele für Daten aus gleitenden Durchschnittsmodellen mit unterschiedlichen Parametern. Links: MA (1) mit yt 20e t 0,8e t-1. Rechts: MA (2) mit y t e t - e t-1 0,8e t-2. In beiden Fällen ist e t normal verteiltes Weißrauschen mit Mittelwert Null und Varianz Eins. Abbildung 8.6 zeigt einige Daten aus einem MA (1) - Modell und einem MA (2) - Modell. Das Ändern der Parameter theta1, dots, thetaq führt zu unterschiedlichen Zeitreihenmustern. Wie bei autoregressiven Modellen wird die Varianz des Fehlerterms et nur den Maßstab der Reihe ändern, nicht die Muster. Es ist möglich, jedes stationäre AR (p) - Modell als MA (infty) - Modell zu schreiben. Beispielsweise können wir dies bei einem AR (1) - Modell demonstrieren: begin yt amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 e et amp phi13y phi12e phi1 e et amptext end Vorausgesetzt -1 lt phi1 lt 1 wird der Wert von phi1k kleiner, wenn k größer wird. So erhalten wir schließlich yt und phi1 e phi12 e phi13 e cdots, ein MA (infty) Prozess. Das umgekehrte Ergebnis gilt, wenn wir den MA-Parametern einige Einschränkungen auferlegen. Dann wird das MA-Modell invertierbar. Das heißt, dass wir jeden invertierbaren MA (q) Prozess als AR (infty) Prozess schreiben können. Invertible Modelle sind nicht einfach, damit wir von MA-Modellen auf AR-Modelle umwandeln können. Sie haben auch einige mathematische Eigenschaften, die sie in der Praxis einfacher zu verwenden. Die Invertibilitätsbedingungen sind den stationären Einschränkungen ähnlich. Für ein MA (1) Modell: -1lttheta1lt1. Für ein MA (2) - Modell: -1lttheta2lt1, theta2theta1 gt-1, theta1 - theta2 lt 1. Kompliziertere Bedingungen gelten für qge3. Wiederum wird R diese Einschränkungen bei der Schätzung der Modelle berücksichtigen.
No comments:
Post a Comment